
Exact theory of polymer adsorption in analogy with the Kondo problem

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 L789

(http://iopscience.iop.org/0305-4470/27/21/001)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A: Math. Gen. 27 (1994) L78SL796. Rinted in ule UK 

LETTER TO THE EDITOR 

Exact theory of polymer adsorption in analogy with the 
Kondo problem 

P Fendley and H Saleurt 
Deparlment of Physics, University of Southern California, Los Angeles CA 90089, USA 

Received 16 August 1994 

AbstracL Weconjedure the exact scaling theory for the adsorption oftwdimensional polymers 
by using boundary S matrices. We computethe boundary fne energy (the ‘g-function’), study the 
flow from adsorbed to desorbed phase and derive the MSSOYW exponent and a l l  the geometrical 
exponents at the transition. More generally, we solve the special m i t i o n  in the O(n) model, 
the polymer case corresponding Lo n = 0. The n = 2 limit appears identical to the ordinary 
Kondo problem. 

There has recently been a surge of activity in the study of two-dimensional field theories 
with boundaries. These are of importance in the many different contexts of open string 
theory, the Callan-Rubakov effect, solid-state physics and dissipative quantum mechanics 
[l]. We point out in this letter that there is another interesting physical problem in this 
category: the adsorption of two-dimensional polymers. We solve it exactly, and find a 
remarkable analogy with the ordinary Kondo problem. 

We study a long two-dimensional polymer in the presence of a boundary. This system 
can be realized experimentally with polymeric materials that spread reproducibly at an air- 
water interface [2]. The solvent is such that the polymer is in the universality class of 
lattice self-avoiding walks. We suppose the polymer has a short-range interaction with the 
boundary, which in the lattice model corresponds to a Boltzmann weight e” per adsorbed 
monomer. At small cE, entropy dominates and the polymer is not adsorbed. As & is 
increased, a critical point c: is reached where energy and entropy terms compensate. At 
this point, the number of adsorbed monomers varies with the total length N as N& a NP, 
where rp is some crossover exponent [3]. For cE 4 c i ,  the typical size of the polymer varies 
with the well known two-dimensional bulk exponent: (Rz )  a N2”, U = For cS > cS cg 

energy dominates and at large distance the polymer behaves like a onedimensional object 
stuck to the wall. with, in particular, ( R z )  cx N2. There is a finite fraction of adsorbed 
monomers which varies as N&/N a (cs - c:)-’+I/P. 

It is well known that polymers can be described by the geometrical O(n) model as 
n -+ 0 [3]. The adsorption transition is numerically known to occur for the loops of the 
O(n) model, at least for n E [O, 11 (later we argue that this is true for n 6 2), so we build a 
theory for it as a function of n. As a surface critical phenomena, this adsorption transition 
can be considered as the special transition [4]. Although the boundary is onedimensional, 
it can order for geometrical models because they are non-local and non-unitary. The special 
transition is not the only boundary critical point; there are also the ordinary and extraordinary 
transitions which correspond to free and fixed boundary conditions in the O(n) model. 
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Following [5 ] ,  we consider a model of self-avoiding and mutually-avoiding polymer 
loops on some lattice with fugacity n per loop and xc per monomer. The first non-trivial 
order as n --f 0 is a single self-avoiding loop and gives the original problem. We choose the 
fugacity xc so that we are at the critical point in the bulk (this point does not depend on what 
happens at the boundary for c' < 6:) and deal, therefore, with very long loops. Monomers 
adsorbed at the boundary have a different fugacity xs e". Near the boundary fixed points, 
the problem can be viewed at large distance as a conformal-field-theory problem (with the 
appropriate scale-invariant boundary conditions) perturbed by the energy operator on the 
boundary. At the free fixed point, this operator has surface scaling dimension two [6] ,  
while at the special point it has dimension (m - l)/(m + 1) [7], with ti = 2cos r / m .  The 
operator is relevant at the special point and irrelevant at the free boundary, so it induces a 
flow from special to free. 

We make the crucial assumption that the boundary does not destroy the integrability of 
the scaling limit of the critical O(n) model. This is very likely since the conformal minimal 
models with Cq.3 perturbation on the boundary are integrable [8] and the O(n) models with 
energy perturbation on the boundary share many properties with these models. We can then 
require the constraints of integrability, in particular. the factorizability of the S matrix. 

To proceed further, we make an analogy with the Kondo problem of a single species of 
electron (k = 1) coupled to a spin-4 impurity. As is well known, the s waves in this three- 
dimensional non-relativistic problem reduce to a relativistic (1 + 1)-dimensional problem 
on the half-line, with the impurity lying on the boundary. In the following, we shall'also 
treat the polymers as a (I + 1)-dimensional problem by performing a Wick rotation. It is 
found (for reviews, see [9]) that there are two critical points in the Kondo problem. In w 
(T -+ CO), the impurity is decoupled and, therefore, there is a spin f sitting at the boundary, 
while in IR (T = 0), the impurity is screened by a bound electron. The model interpolates 
between the two fixed points, with the Kondo temperature TK as the scale at which the 
behaviour crosses over from one critical point to another. 'Ibis problem is conveniently 
approached using S matrices [IOIt. In the bulk, there is a doublet of left-moving particles 
canying a label 1 , 2  (which stands for S, = Ai), and likewise for the righr The particles 
are massless with dispersion relation E = * p  which we parametrize by E = Fe-' for the 
left movers and E = pee for the right. All physics is independent of the arbitrary scale F. 
At the bulk critical point, right and left particles are independent (the two Fermi surfaces 
are infinitely far apart), so the scattering matrix SLR = 1. The bulk scattering matrix for 
two left movers with rapidities 81 and 82 reads 

where 8 = 81 - &, I is the identity matrix and e = K I  with 

0 0  0 0  
K q = ( o  0 -1 q q-' - 1  .). 0 

0 0  0 0  

The function Z(8) is a known factor ensuring unitarity and crossing symmetry. The impurity 
can be thought of as a single particle sitting at the boundary; the S matrix for scattering a 

t We discuss only the spin degrees of freedom; since the charge degree of freedom does not couple 10 thc boundary, 
we ignore it. 
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left mover off the impurity (so it becomes a right mover) is 

This is the simplest solution of the boundary 'cross-unitarity' relation [g]. The 'boundary 
rapidity' & is related to TK by 

The bulk S matrix (1) for the Kondo problem is in fact the S matrix for the critical O(n) 
model at n = 2 [Ill. We can extend this analogy to the boundary case and then to other 
values of n. Suppose we draw the trajectories of the Kondo particles in (1 + 1)-dimensional 
space as lines in the plane. The bulk S-matrix can be rewritten in the manifestly O(2) 
symmetric form as 

hI(/l/TK). 

. .  
(sU)g = z(e)[stst + f(e)si,i2sjij11. (3) 

The three possible O(n)-invariant S matrix elements are the three ways that two lines can 
meet each other at a vertex. The absence of the third invariant tensor in (3) leaves only 
self-avoiding trajectories and, formally, the resulting configurations are identical to the ones 
of the lattice O(2) model. Since the Kondo boundary scattering is equivalent to that of 
a single particle sitting at the boundary, we get, in this picture, a 'shadow' line on the 
wall. Its effect depends on the energy scale TK; in w, the line is there and behaves like an 
adsorbed line in the O(2) lattice model, whereas in R it disappears. By this analogy, we 
see that the Kondo flow, after an appropriate change of variables, looks very much like the 
flow from special to free in the O(2) model (we will make this statement mathematically 
precise soon). A natural idea is then to extend the known solution of the Kondo problem 
to n species and then make a continuation to n = 0 to solve our polymer problem. 

How to do this in the bulk is well known. The S matrix (3) can obviously be generalized 
to an O(n) symmetric matrix by allowing i and j to run from 1 to n. We write it as 

sLL = z(e)[r + f ( ~ ) e ( ~ ) ] .  (4) 

The function f is determined by requiring that the S matrix obeys the Yang-Baxter equation. 
The matrix e in (I)  satisfies the Temperley-Lieb algebra relations Tt(2)  at the particular 
value n = 2 of the usual parameter, while the e(") matrices provide a representation of the 
ZZ(n) algebra. Using this algebra, one finds that the Yang-Baxter equation reduces solely 
to a functional equation for f (6) depending on n. The solution is [ll] 

where n = q + q-' and q = exp(in/m). Physical predictions depend only on the algebra 
satisfied by the S matrices and not the particular representation of the algebra [I 1-13]. We 
can, thus, use the other representation e("' = K p .  Because this representation makes sense 
for n uon-integer, it provides the desired analytic continuation. The boundary S mahix is 
(2) in all of these representations. 

To conclude, we conjecture that the bulk S matrix (4) with e(") = Kq and the boundary 
S matrix (2) describe the full field theory that interpolates between special and free boundary 
conditions for the O(n) model with n < 2. This theory has massless bulk particles and a 
boundary S matrix depending on the scale TK. 
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To test this conjecture, we show that it gives a number of quantitative predictions for the 
special transition, all consistent with known results. We use the thermodynamic Bethe ansatz 
(TBA) to derive the free energy resulting from the boundary S matrix. As usual, instead of 
looking at right and left movers on the half-line, we look at the equivalent problem of left 
movers on the full line. This transforms the boundary into a ‘particle’ fixed at the origin. 
To quantize the momenta, instead of the full line, we take space to be a circle of length 
L. We, therefore. consider the O(n) model as a (1 + I)-dimensional problem at quantum 
temperature T .  Physically, this corresponds to the statisticalmechanical problem on a torus 
of length L and circumference R = I/T with one impurity line in the middle. There is a 
bulk free energy independent of the boundary coupling, as well as a surface or impurity free 
energy. To compute the latter, we need to specify the value of n and use a representation 
of the S matrix algebra for this particular value. The simplest approach will be to make 
computations for n = 2cos(n/m) where m is an integer, and then to continue naively the 
results to m non-integer or m = 2. The bulk calculation can be found, for example, by 
taking the zero-mass limit of the O(n) model calculation in [13]. The free energy is given 
in terms of the pseudo-energies <,(e) obeying the set of integral equations 

where j = 1, . . . , m - 2 and €0 = €,-I = 03. Including a non-trivial boundary, the S 
matrix changes the quantization condition for the particles’ momenta, which changes the 
density of states. This, in turn, adds an extra piece to the free energy, yielding 

The Kondo result [9] is given by taking m + 03. 

Let us now extract physical predictions from this. The easiest result to get is the cross- 
over exponent q. To obtain it, we observe, following 1141, that the system (6) implies the 
periodicity of the pseudo-energies: 6J.9 + (m + l)irr] = cj(8) .  As a consequence, close to 
8 = 03, we can expand 

Moreover, one can show by explicitly plugging the expansion into equations (6) that the 
term k = 1 vanishes identically. The k = 0 term follows from the solution of the system 

x 2  J = (1 + Xj-I)(l + X j + l )  (9) 

where x j  = yielding 

r ,  [ sinn/(m + 1) 
sinx(j + lj/(m -k 1) 

1 + x j =  

Expansion (8) enables us to find the W behaviour of fi-. As T -+ 00, the integral is 
dominated by the 8-large region where the expansion is expected to be valid, so that 
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plus, perhaps, some non-universal bulk terms. Thus, we recover the fact that the dimension 
of the energy operator at the special transition is 1 - 2/(m + 1). Standard finitesize and 
boundary scaling arguments imply that fimp is a function of (x’ - x,S)’”+’R where v is the 
usual [5] thermal exponent U = 9. Also, from perturbation theory, we expect that f i m P  
is analytic in xs - x:. Therefore, 

_ = _ _  6 0 2  
v m + l  

and p = as desired [7]. Moreover, we deduce from the absence of the k = 1 term in 
expansion (1 1) that the one-point function of the boundary energy vanishes at the uv fixed 
point, a known characteristic of the special transition 161. In the m -+ 03 Kondo limit, the 
expansion results in the familiar log terms of the Kondo problem. 

We also find a similar expansion near the free fixed point (T + 0). In this limit, only 
the region B negative and large contributes to the impurity free energy. One can, thus, 
expand out the I/cosh in (7) as 

% -e 1 
2cosh(B - ln(T/TK)) TK 

We can integrate each piece individually because €1 % exp(-8) as 0 + -CO, yielding 

Notice that (12) goes to zero at T = 0. The power of the first correction indicates that the 
dimension of the energy operator at the free fixed point is 1 - (-1) = 2, as expected [61. 
Moreover, by using perturbed conformal-field theory. one, in fact, finds that the universal 
contribution to the TZ term must vanish, as indeed seen in (11). 

The crucial identification with the special transition can be obtained by looking at the 
evolution of the boundary ‘g-function’ [15,16]. On a long strip of length L,  the partition 
function with boundary conditions A and B at the sides reads 2 = g,&B exp(-EoL). Thus, 
g associated with OUT boundary condition should beg = exp(-Amp/T). There are a number 
of subtleties which arise [ 171; however, for massless theories, these should result only in 
multiplying g by an overall constant independent of scale. Thus, from the ms, we see how 
g flows from the uv (special) to IR (free), the expansions (11) and (12) giving 

sin2n/(m + 1) 
(1 +x1)”2 = guv 

gm sinn/(m i- 1) ‘ 
-=  

To derive gw and g m  from conformal-field theory, one needs to constrnct the boundary 
states in the manner of [15]. In the O(n)  model, this is problematic because of the non- 
locality; we discuss this below. However, without knowing these states explicitly, we can 
still find the boundary ‘fusion’ operator @ which changes the boundary conditions from 
free to special. This enables us to determine the ratio gw/gR, and confirm the result 
numerically. If the boundary conditions A and E are such that only the state created by the 
operator @,,s (and its descendants) propagates along the strip, it follows that, for minimd 
models [15,16], g , & ,  = SG, where .$;fs, is the modular-transformation matrix for the 
minimal-model characters. We choose A to be the free boundary conditions and E such 
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that Qr,l propagates. We then change the boundary condition A to the special boundary 
condition by inserting the boundary operator @. If @ = for some s then 

Comparing with (13). we see that the TBS indicates that @ = @I,*. This is consistent with 
the Kondo case, where @ is the SU(2)l primary field 1181. This field has bulk dimension 
+, which is the m + 03 limit of the dimension of the @I,* field. 

To check this numerically, first recall that the surface exponents for the ‘fuseau’ operators 
(operators which force L lines down the strip) are S, = h~+l,l  [19]. It follows that if both A 
and B are free boundary conditions and L lines go along the strip, the state that propagates 
corresponds to the operator @L+I,I .  Thus, if we change the boundary conditions on both 
sides of the ship from free to special. the operators in the OPE@ x @ x @L+I,I are those 
which propagate. For @ = m1.2. this means that @ ~ + 1 . 3  + @L+I,I  propagate. It is easy to 
see that h ~ ~ 1 . 3  < h~+l,l  for L 2 1. Hence, the exponent of the L-lines fuseau operator 
at the special point should be h~+l.3 while it is ~ L + I . I  at the free point. It is easy to 
investigate this question numerically by explicitly diagonalizing the transfer matrix of the 
lattice O(n) model. The question of surface exponents has been addressed in [19,20]. 
In [20], the authors study the adsorption transition for polymers but, unfortunately, they 
do not discuss the fuseau operators for L > 1 nor the m e  n # 0. We have, therefore, 
extended their analysis to these cases. The results look as usual and confirm completely 
that @ L + , , ~  propagates down the ship at the special point, giving strong evidence indeed 
for our conjecture. We give some examples for n = 1 below. 

Exponents for polymers follow from above by choosing m = 2. Other quantities can 
be obtained by studying values near m = 2 and taking appropriate derivatives. For instance 
the ratio (14) is, of course, equal to one for n = 0 but the result for one polymer loop 
follows from the first non-trivial term: gw/gm = 2/3& The analysis of the free energy 
for non-integer values of m is technically more complicated 1131, but, for the polymer. one 
can obtain it as an analytic function of R2P(xs - x:). One expects, generally, that it is 
proportional to the number of adsorbed monomers N A  and that 

Nab = N’F[(x5 - $)N’] (15) 

where F is a scaling function that would be most interesting to compute. What we obtained, 
of course, look?. qualitatively l i e  this, but, instead of N ,  we have the variable R .  By finite- 
size scaling, the typical length of the polymer on a cylinder of radius R at critical bulk 
coupling varies as N cx R4P, so using v, = $, our expansion (11) indeed looks like (15). 

Equation (13) can also be continued to n c 0. In this regime, guv c g m ,  so the ‘g- 
conjecture’ [16] does not hold for non-unitary models, as was the case for the c-theorem of 
Zamolodchikov. Another interesting characteristic is that we find perfectly reasonable results 
at n 2 1 too. The standard result [21]. that the O(n) model has a one-dimensional phase 
transition only for n < 1 ,  can naively be used to argue that the special transition disappears 
for n > 1. Think, however, of the laaice O(n) model. The high-temperature expansion 
of the king model gives an O(n = I) model with a fugacity x = th B per monomer. The 
special transition in the loop model occurs at the value of fugacity for monomers at the 
boundary that corresponds to ,B = 03, since the Ising model in one dimension orders only at 
zero temperature: x: = 1. Thus, there is a special transition in the geometrical O(n) model 
with n = 1 although it is usually agreed that there is none for the Ising model. The Ising- 
spic model is a subset of the geometrical model only. The geometrical objects experience a 
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transition, but the geometrical properties do not have a local meaning in terms of spins. For 
n > I ,  it is possible that there is a finite transition for a finite-boundary-monomer fugacity 
which, however, would correspond to sending the boundary coupling of the O(n) model 
into the complex plane. If so, one really could consider the spin degrees of freedom in 
the Kondo problem as the n = 2 limit of the special transition of the O(n) model. This 
certainly seems w e  from the formal point of view of the S matrices and the "BS. 

Measurements of the surface exponents at the special transition in the n = 1 model are 
easier at this point because we know x: exactly; for other values of n it must be determined 
numerically. We, thus, numerically diagonalize the transfer mabix at n = 1 and find the gaps 
in the spectrum, which are proportional to the scaling dimensions. With special boundary 
conditions on both sides of a strip of width M lattice sites, these dimensions are: 

M = 3  4 5 6 M Exwcted 

L = 2  0,19106 9.17961 0.17340 0.16923 0.167(2) $ 
L = 3  1.19444 1,13747 1.10741 1.08955 1.02(2) 1 
L = 4  2.03612 2.75960 2,74731 2.721 18 2.6(2) 

This confirms our identification of the (P1.2 operator as the boundary fusion operator. 
We also find from the above results gUv/gm = d. This cannot really be interpreted in 
terms of spin?. Indeed, the R fixed point is just free boundary conditions for the high- 
temperature contours and, therefore, also for the king spins, hence, g m  = 1 [15]. The w 
fixed point corresponds to infinite coupling of king spins at the boundary, so these spins can 
be either all + or all -. Moreover, summing over these two choices leads essentially to free 
boundary conditions for the spins next to the boundary. Hence the w fixed point should be 
interpreted as some superposition of (two possible) fixed and one free boundary condition. 
This can be made more quantitative by recalling that the one-point function of the energy 
operator vanishes at the special transition. This happens for a boundary state invariant under 
duality, for example, the superposition $(lfixed+) + !fixed-) + al free) ) .  There is no such 
boundary state in the king-spin model since the coefficients are not integers. However, 
there can be such a state in the non-minimal-loop model where the condition of integrality 
is relaxed [22]. 

We have concentrated on the flow towards the desorbed phase, but the flow towards 
the adsorbed one should not be very different since once a polymer is adsorbed at the 
boundary and has fractal dimension one, the other polymers see free boundary conditions 
on a slightly smaller system. We have checked numerically that in the adsorbed phase the 
fuseau exponentE again have the value d i  = hL+1.1. 

This work was supported by the Packard Foundation, the National Young Investigator 
program (NSF-PHY-9357207) and the DOE (DE-FG03-84ER40168). We thank P Dorey 
for useful correspondence. 

t We do note, however. Lhat, up to a constant shift, the free energy at n = I should also describe Lhe flow from 
free to fixed boundary conditions in the king model [16], which has precisely this ratio. This case conesponds 
to pflurbation by the magnetic field, which is not invariant under spin Eip and is not equivalent to our problem. 
However, one can check the dimensions of the magnetic field at the free and fixed points and one finds that they 
are the same as those of the energy operator at the special and free points, respectively. 
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